设为首页 | 加入收藏
 
 首页 | 学院概况 | 师资队伍 | 科学研究 | 本科生教育 | 研究生教育 | 物理实验室 | 团学工作 | 党建思政 | 职工之家 | 校友工作 
当前位置: 首页>>通知公告>>正文
学术报告:Cluster tilting subcategories in cluster categories
2017-06-16 09:06   审核人:

报告题目II:Cluster tilting subcategories in cluster categories

报告人:牛红薇博士

University of Sherbrooke, Canada

时间:2017年6月19日16:00-17:00

地点:1教120

报告摘要:Let C (Q) be the cluster category associated with a quiver without infinite paths Q. If Q is finite, then the cluster tilting subcategories in C (Q) are precisely the rigid subcategories whose non-isomorphic indecomposable objects coincides with the number of vertices of Q. In case Q is of infinite Dynkin type, it is known that cluster tilting subcategories in C (Q) are precisely the maximal rigid subcategories that are functorially finite. In case Q is of type A∞, Holm-Jorgensen and Liu-Paquette have found criterions for a maximal rigid subcategory to be cluster tilting. In this talk, we shall present a complete classification of the maximal rigid subcategories and give a method to construct all of them. In particular, this yields a new construction of all cluster tilting subcategories in C (Q) in case Q is type A∞. A similar construction is also found in case where Q is of type An.

报告人简介:牛红薇博士,2012年9月本科毕业于湖南师范大学,2013年9月起留学于加拿大舍布鲁克大学,攻读硕士和博士学位,研究方向为代数表示理论。

关闭窗口

版权所有:兰州交通大学数理学院
邮编:730070     地址:兰州市安宁西路88号